Topology Final Test (BMath-2nd year, 2025)

Instructions: Total time 3 Hours. Solve as many problems as you like, for a maximum score of 60. Use terminologies, notations and results as covered in the course, no need to prove such results. If you wish to use a problem given in an assignment or homework or any other such, please supply its full solution.

- 1. Let r > 0 and $p \in \mathbb{R}^n$ be arbitrary. Prove that \mathbb{R}^n is homeomorphic to the open ball B(p,r) with center p and radius r in \mathbb{R}^n by giving an explicit homeomorphism. (5)
- 2. Let X be any of the following topological spaces : (a) Klein bottle (b) projective plane (c) torus (d) Möbius band. Prove that the complement of any finite set in X is path connected. (10)
- 3. Let X denote the Möbius band with its boundary circle removed. Prove that the one point compactification of X is homeomorphic to $\mathbb{R}P^2$. (10)
- 4. Prove that any group automorphism of S^1 which is also a homeomorphism is either the identity map $z \mapsto z$ for all $z \in S^1$ or the inversion $z \mapsto z^{-1}$, for all $z \in S^1$. (10)
- 5. Let G denote the group of self-homeomorphisms of \mathbb{R}^2 generated by the maps $\tau((x,y)) = (x+1,y)$ and $\eta((x,y)) = (-x,y+1)$. Prove that the quotient space \mathbb{R}^2/G is homeomorphic to the Klein bottle. (15)
- 6. Let X be a compact Hausdorff space and C(X) denote the cone over X. Let $Y = X \times [0, 1)$ with product topology. Prove that the one point compactification of Y is homeomorphic to C(X). (10)
- 7. Prove that the metric space $(\mathcal{C}([0,1]), \sup)$ of all continuous real valued functions on [0,1], is not locally compact. (Hint: Consider the functions $f_n(x) = nx, \ 0 \le x \le 1/n, \ f(x) = 1, \ 1/n \le x \le 1.$) (10)
- 8. Let $p : \mathbb{R}^2 \to [0, \infty)$ be given by $p((x, y)) = x^2 + y^2$. Is p a quotient map? Explain. (5)
- 9. Let X and Y be topological spaces with X compact. Prove that the projection map $\pi : X \times Y \to Y$ is a closed map. (10)